This module contains data types, function and routines for wall function computations relative to Schmitt profile. Ref to following paper for Schmitt three layer equations. Haussmann, M. et al. (2019) ‘Large-eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method — Application to Coriolis mass flowmeter’, Computers & Mathematics with Applications. Elsevier Ltd, 78(10), pp. 3285–3302.
author: Gregorio Gerardo Spinelli
Constant parameters for Schmitt's law
| Type | Visibility | Attributes | Name | Initial | |||
|---|---|---|---|---|---|---|---|
| real(kind=rk), | public, | parameter | :: | sc_uLmt | = | 30._rk | |
| real(kind=rk), | public, | parameter | :: | sc_lLmt | = | 5._rk | |
| real(kind=rk), | private, | parameter | :: | vonKA | = | 0.4_rk |
extend the abstract subclass mus_wall_function_type
| procedure, public, nopass :: get_uPlus | function to get uPlus |
| procedure, public, nopass :: get_d_uPlus_d_uTau | function to apply the newton method |
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=rk), | intent(in) | :: | visc_div_dist |
dynamic viscosity divided by vertical distance from the wall |
||
| real(kind=rk), | intent(in) | :: | velSW |
velocity stream-wise parallel to wall |
friction velocity
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=rk), | intent(in) | :: | visc_div_dist |
dynamic viscosity divided by vertical distance from the wall |
||
| real(kind=rk), | intent(in) | :: | velSW |
velocity stream-wise parallel to wall |
friction velocity
function to get uPlus
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=rk), | intent(in) | :: | yPlus |
yPlus |
output is uPlus
function to get the derivative of uPlus with respect to uTau
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=rk), | intent(in) | :: | y |
vertical distance from the wall |
||
| real(kind=rk), | intent(in) | :: | uTau |
uTau at iteration n |
||
| real(kind=rk), | intent(in) | :: | nu |
dynamic viscosity |
output is derivative of uPlus with respect to uTau