tem_spatial_parabol3d_for_treeIds Function

private function tem_spatial_parabol3d_for_treeIds(me, treeIds, tree, n) result(res)

This function computes 3d parabola profile from treeIDs of an element.

This profile is defined by element barycentric coordinate and 3d parabola parameters. 3D parabola profile at given plane is computed in the following way:

  • Project barycentric coordinate vector in a given plane via
  • Compute spatial value using Example: Parabolic 3D profile at channel inlet.

parabolic3d

Arguments

Type IntentOptional Attributes Name
type(tem_canonicalND_type) :: me

contains plane parameter for 3d parabola

integer(kind=long_k), intent(in) :: treeIds(n)

treeIds of elements in given level

type(treelmesh_type), intent(in) :: tree

global treelm mesh

integer, intent(in) :: n

number of return values

Return Value real(kind=rk), (n)

return value of a function


Source Code

  function tem_spatial_parabol3d_for_treeIds( me, treeIds, tree, n ) result(res)
    ! -------------------------------------------------------------------- !
    !> contains plane parameter for 3d parabola
    type( tem_canonicalND_type ) :: me
    !> global treelm mesh
    type( treelmesh_type ), intent(in) ::tree
    !> number of return values
    integer, intent(in) :: n
    !> treeIds of elements in given level
    integer(kind=long_k), intent(in) :: treeIds(n)
    !> return value of a function
    real(kind=rk) :: res(n)
    ! -------------------------------------------------------------------- !
    real(kind=rk) :: coord(3), alpha, beta, diff(3)
    real(kind=rk) :: vecAsqr, vecBsqr
    real(kind=rk) :: center(3), halfvec(2,3)
    !loop variables
    integer :: iDir, jDir
    ! -------------------------------------------------------------------- !

    jDir = 0
    do iDir = 1, 3
      if( me%active( iDir )) then
        jDir = jDir + 1
        halfvec( jDir, : ) = me%vec( :, iDir ) / 2._rk
      end if
    end do


    center = me%origin + halfvec(1, :) + halfvec(2, :)

    vecAsqr = dot_product( halfvec(1, :), halfvec(1, :) )
    vecBsqr = dot_product( halfvec(2, :), halfvec(2, :) )

    !loop over number of return values
    do iDir = 1, n

      !barycentric coordinate
      coord = tem_BaryOfId( tree, treeIds(iDir) )

      !distance between parabola center and barycentric coordinates
      diff = coord - center
      !projection of diff in a plane on vecA
      alpha =  dot_product( diff, halfvec(1, :) ) / vecAsqr

      !projection of diff in a plane on vecB
      beta =  dot_product( diff, halfvec(2, :) ) / vecBsqr

      res( iDir )  = ( 1.0_rk-alpha ) * ( 1.0_rk+alpha ) &
        &          * ( 1.0_rk-beta ) * ( 1.0_rk+beta )

      if ( abs(alpha) .gt. 1.0_rk .or. abs(beta) .gt. 1.0_rk ) then
        res( iDir ) = 0.0_rk
      end if
    end do

  end function tem_spatial_parabol3d_for_treeIds